PUNYASHLOK AHILYADEVI HOLKAR SOLAPUR UNIVERSITY,
SOLAPUR
FACULTY OF SCIENCE & TECHNOLOGY
COMPUTER SCIENCE AND ENGINEERING

Syllabus Structure for

Second Year (Computer Science & Engineering) B.Tech w.e.f. Acad. Year 2019-20

Choice Based Credit System
A. Program Educational Objectives
1. To make students competent for professional career in Computers, IT & allied fields.
2. To build strong fundamental knowledge amongst student to pursue higher education and continue professional development in Computers, IT & other fields.
3. To imbibe professional ethics, develop team spirit and effective communication skills to be successful leaders and managers with a holistic approach.
4. To nurture students to be sensitive to ethical, societal & environmental issues while conducting their professional work.

B. Program Outcomes Engineering Graduate will be able to –
1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

C. **Program Specific Outcomes (PSOs)**

1. Graduate has an ability to use technical skills necessary for design, maintenance, development and implementation of database systems and networking applications.

2. Graduate has an ability to provide IT solutions, develop mobile applications in multidisciplinary areas using standard tools and techniques.

3. Graduate has an ability to utilize and apply software engineering tools for design and realization of projects in various domains of Computer Science and Engineering.
Semester – III

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Theory Course Name</th>
<th>Hrs./Week</th>
<th>Credits</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>CS 211</td>
<td>Applied Mathematics-I</td>
<td>3</td>
<td>1</td>
<td>--</td>
</tr>
<tr>
<td>CS 212</td>
<td>Discrete Mathematical Structures</td>
<td>3</td>
<td>1</td>
<td>--</td>
</tr>
<tr>
<td>CS 213</td>
<td>Data Communication</td>
<td>3</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CS 214</td>
<td>Digital Techniques</td>
<td>4</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CS 215</td>
<td>Computer Graphics</td>
<td>3</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CS 216</td>
<td>Advanced C Concepts</td>
<td>2</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>18</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td>Environmental Studies</td>
<td></td>
<td>1</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Laboratory / Workshop

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Theory Course Name</th>
<th>Hrs./Week</th>
<th>Credits</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>CS 213</td>
<td>Data Communication</td>
<td>--</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>CS 214</td>
<td>Digital Techniques</td>
<td>--</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>CS 215</td>
<td>Computer Graphics</td>
<td>--</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>CS 216</td>
<td>Advanced C Concepts</td>
<td>--</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>--</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

Grand Total

<table>
<thead>
<tr>
<th>Hrs./Week</th>
<th>Credits</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

Semester – IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Theory Course Name</th>
<th>Hrs./Week</th>
<th>Credits</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>CS 221</td>
<td>Applied Mathematics-II</td>
<td>3</td>
<td>1</td>
<td>--</td>
</tr>
<tr>
<td>CS 222</td>
<td>Theory of Computation</td>
<td>4</td>
<td>1</td>
<td>--</td>
</tr>
<tr>
<td>CS 223</td>
<td>Microprocessors</td>
<td>3</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CS 224</td>
<td>Data Structures</td>
<td>3</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CS 225</td>
<td>Computer Networks</td>
<td>3</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CS 226</td>
<td>Object Oriented Programming through C++</td>
<td>2</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>18</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td>Environmental Studies</td>
<td></td>
<td>1</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Laboratory / Workshop

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Theory Course Name</th>
<th>Hrs./Week</th>
<th>Credits</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>CS 223</td>
<td>Microprocessors</td>
<td>--</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>CS 224</td>
<td>Data Structures</td>
<td>--</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>CS 225</td>
<td>Computer Networks</td>
<td>--</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>CS 226</td>
<td>Object Oriented Programming through C++</td>
<td>--</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>--</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

Grand Total

<table>
<thead>
<tr>
<th>Hrs./Week</th>
<th>Credits</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

Abbreviations: L- Lectures, P –Practical, T- Tutorial, ISE- In Semester Exam., ESE- End Semester Exam, ICA- Internal Continuous Assessment, ISE- Internal Tests, ESE - University Examination (Theory & POE &Oral examination)

Note: ‘#’ indicates Practical exam only.
Note:
For Semester III and Semester IV: The Structure of S.Y. B.Tech (CSE) and S.Y. B.Tech (IT) is same therefore, paper will be common for both the programs.
1. Student is required to study and pass Environmental Science subject in Second Year of Engineering to become eligible for award of degree.
2. Batch size for the practical /tutorial shall be of 20 students. On forming the batches, if the strength of remaining students exceeds 9, then a new batch shall be formed.
3. Vocational Training (evaluated at B.E. Part-I) of minimum 15 days shall be completed in any vacation after S.E. Part-II but before B.E. Part-I & the report shall be submitted and evaluated in B.E. Part-I
4. ICA assessment shall be a continuous process based on student’s performance in – class tests, assignments, homework, subject seminars, quizzes, laboratory books and their interaction and attendance for theory and lab sessions as applicable
Introduction:
This course includes mathematical theory and concepts required by the computer engineer. The course consists of linear differential equations which can be used for mathematical model which are appearing in computer engineering, where these variables are dynamically related. This course introduces Z-transform which provide a mathematical framework for a series of mathematical conversions that are useful for digital filters. Laplace transforms is another powerful mathematical tool for engineering problems in Computer Science and Engineering. This course also introduces Fourier series, which plays an important role in designing, and analyzing communication system. This course also introduces fundamentals of probability distributions which are useful for digital communication. This course introduces Queuing systems which are prevalent throughout society. There are applications of queuing theory in several disciplines.

Course Prerequisite:
Fundamentals of trigonometry, method of finding roots of algebraic equations, differentiation, integration, partial fraction, sum of sequence and methods of solving definite integrations, basics of statistics and probability theory.

Course Objectives:
1. To introduce to student method of solving higher order linear differential equations
2. To introduce to student Laplace and inverse Laplace transforms
3. To introduce to student Fourier series of periodic functions
4. To make student understand Z Transform and its properties
5. To introduce to student various probability distributions
6. To introduce to student Queuing theory and its model.

Course Outcomes:
1. Student can solve higher order linear differential equation with constant coefficient
2. Student can apply Laplace and inverse Laplace transforms for solving linear differential equations.
3. Student can express a function in terms of sine’s and cosines components so as to model simple periodic functions.
4. Student can solve problems on Z transform and explain its properties
5. Student can find the relation between two variables for the given data using regression and explain various probability distribution functions.
6. Student can solve problems based on queuing theory.
SECTION – I

Unit 1: Linear differential equations with constant coefficients: No. of lectures-07
Basic definition, differential operator, complimentary functions, particular integral, Shortcut methods for standard functions like \(e^{ax}, \sin(ax + b), \cos(ax + b), x^m, e^{ax}V \) and \(xV\), particular integral by general method (without method of variation of parameters) for other functions.

Unit 2: Z-Transform: No. of lectures-05
Introduction, Z-Transform of standard sequence, properties of Z-transform – linearity, change of scale, shifting property, multiplication by \(k\), division by \(k\), inverse Z- transform –power series method, partial fraction method

Unit 3: Laplace transform: No. of lectures-09
Definition, Laplace transform of standard functions, properties- first shifting, change of scale, multiplication of power \(t\) and division by \(t\), Laplace transform of derivative and integral, Laplace transform of periodic functions, unit step functions and unit impulse functions, properties of inverse Laplace transforms- linear property, first shifting theorem, partial fraction, inverse transform of logarithmic & inverse trigonometric functions and convolution theorem, solution of differential equations by Laplace transform.

Unit 4: Fourier series: No. of lectures-07
Introduction, Definition, Euler’s formula, Fourier series of periodic functions with period \(2\pi\) and \(2L\), Dirichlet’s theorem (only statement), even and odd functions, half range sine and cosine series.

Unit 5: Statistics and probability: No. of lectures-08
Coefficient of correlation by Karl Pearson’s method and lines of regression of bivariate data, random variable, discrete and continuous random variable, probability density function, Binomial, Poisson, Normal distribution

Unit 6: Queuing Theory: No. of lectures-06
Introduction, Queuing system, Distributions in Queuing systems, Kendall’s notation, classification of queuing models, M/M/1: ∞/∞ models, M/M/1: N/∞ models.

- Internal Continuous Assessment (ICA):
 ICA shall consist of minimum six to eight assignments based on entire curriculum

- Text books:

- Reference Books:
Introduction:
This course introduces discrete mathematics which deals with fundamentals of mathematical reasoning and set theory. The course also introduces theoretical and mathematical aspects of relations, functions, algebraic system & Boolean algebra.

Course Prerequisite: Student shall have knowledge of basic mathematics.

Course Objectives:
1. To get acquainted to basic connectives and find equivalent formulas and normal forms.
2. To draw implications from basic primitives.
3. To introduce set theory and relations with illustrations.
4. To introduce the concepts of functions and its types through scenarios.
5. To define types of algebraic systems and applications.

Course Outcomes:
Students will be able to:
1. Use connectives and develop well formed formulas and find the equivalence of formulas and equivalent normal forms.
2. Draw inferences for the given premises.
3. Apply set theory and relations to draw conclusions.
4. Define the function and apply it to different scenarios.
5. Demonstrate use of Algebraic structures.

SECTION-I

<table>
<thead>
<tr>
<th>UNIT</th>
<th>Mathematical logic</th>
<th>6 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIT-1</td>
<td>Introduction, statements and Notation, Connectives - negation, conjunction, disjunction, conditional, bi conditional, statement formulas and truth tables, well-formed formulas, Tautologies, Equivalence of formulas, Duality law, Tautological implications, functionally complete sets of connectives, other connectives.</td>
<td></td>
</tr>
<tr>
<td>UNIT-2</td>
<td>Representation of expressions</td>
<td>4 Hrs.</td>
</tr>
<tr>
<td>UNIT-3</td>
<td>Basic concepts of set theory, types of operations on sets, ordered pairs, Cartesian product.</td>
<td>4 Hrs.</td>
</tr>
</tbody>
</table>
UNIT - 4 Relations

<table>
<thead>
<tr>
<th>Relations</th>
<th>7 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relations, Properties of binary relations, Matrix and graph representation, Partition and covering of set, Equivalence relation, Composition, POSET and Hasse diagram.</td>
<td></td>
</tr>
</tbody>
</table>

SECTION II

<table>
<thead>
<tr>
<th>UNIT- 5 Functions</th>
<th>4 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function -types, Composition of functions, Inverse functions.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT- 6 Algebraic systems</th>
<th>7 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebraic systems, semi groups and monoids, properties and example.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT- 7 Groups</th>
<th>6 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polish expressions and their compilation, Groups, group codes.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT - 8 Lattices and Boolean algebra</th>
<th>7 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lattice as POSETs, definition, examples and Properties, Special Lattices, Boolean algebra definition and examples, Boolean functions.</td>
<td></td>
</tr>
</tbody>
</table>

Internal Continuous Assessment (ICA):

In tutorial session, students of different batches should be assigned exercise problems and should be guided for the solution. Minimum one tutorial per unit is expected.

Text books:

1. Discrete mathematical structures with applications to computer science -- J. P. Tremblay & R. Manohar (MGH International)

Reference Books:

1. Discrete Mathematics with combinatorics and graph theory- S. SNTHA (CENGAGE Learning)
2. Discrete Mathematical Structures- Bernard Kolman, Robert C. Busby (Pearson Education)
3. Discrete mathematics -- Liu (MGH)
4. Theory and problems in Abstract algebra -- Schaums outline series (MGH)
5. Discrete Mathematical Structures- Y N Singh (WILEY)
Introduction:
This course introduces Data Communication Fundamentals and Computer Networks basic knowledge. It also covers the details of Physical Layer, Data Link Layer and Network Layer design issues.

Course Prerequisite: Students should have knowledge of Computer Systems and basics of C programming language.

Course Objectives:
1. To introduce Data Communication Fundamentals such as Data, Signals, Transmission media.
2. To explain uses of Computer Network, OSI Reference Model and TCP/IP model.
3. To demonstrate different physical media and devices.
4. To introduce different Data Link layer protocols.
5. To introduce different routing algorithms and congestion control in Network Layer.

Course Outcomes:
Students will be able to:
1. Send data through various data communication modes.
2. Differentiate between the OSI reference model and TCP/IP model.
3. Identify and classify different physical media and devices.
4. Demonstrate functions of Data Link Layer.
5. Simulate different routing algorithms in Network Layer.

SECTION-I

<table>
<thead>
<tr>
<th>UNIT-1</th>
<th>Data Communication Fundamentals</th>
<th>7 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concepts & Terminology, Analog & Digital data transmission, Transmission impairments, Channel capacity, guided transmission media, Digital data to digital signal encoding, Asynchronous and Synchronous Transmission.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT-2</th>
<th>Reference Models</th>
<th>7 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uses of Computer network, Network hardware, Network software, Types of Network Topologies, OSI reference model, TCP/IP protocol, ATM reference model.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT-3</th>
<th>Data Link Layer</th>
<th>8 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DLL design issues, Error detection & correction, Elementary DLL protocols, Sliding window protocols.</td>
<td></td>
</tr>
</tbody>
</table>
SECTION-II

<table>
<thead>
<tr>
<th>UNIT - 4</th>
<th>Medium Access Control</th>
<th>8 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Channel allocation problems, Multiple access protocol: ALOHA, CSMA, CSMA/CD, Collision free protocols, Limited contention protocols.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT - 5</th>
<th>IEEE standards</th>
<th>6 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IEEE standards 802.3, 802.4, 802.5 & 02.6(DQDB), Bridges, Switches, Routers</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT - 6</th>
<th>Network Layer</th>
<th>9 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Network layer design issues, Routing algorithms: shortest path routing, flooding, flow-based routing, distance vector routing, link state routing, hierarchical routing, Congestion control algorithms, Internetwork</td>
<td></td>
</tr>
</tbody>
</table>

Internal Continuous Assessment (ICA):

Student should perform minimum 8 experiments based on the following guidelines.

1. Implementation of simplex, half duplex and full-duplex using RS 232 C (9 pin) standard and bioscom function.
2. File transfer using RS 232C std. and bioscom function.
3. Simulation of different Framing methods. (Character count, starting and ending flag etc)
4. Implement error detection method – CRC
5. Implement error detection and correction method - Hamming code.
6. Implement a program for simulation of sliding window protocols.
7. Implementation of IEEE 802.3, 802.4 and 802.5 frame formats and conversion of 802.x frame into 802.y frame.
8. Implementation of Shortest path routing algorithm.
10. Given the IP address find out class, subnetmask, netid and hostid.

Text Books:

2. Computer Networks (Unit 2, 3, 4, 5,6)--Andrew S. Tanenbaum (third edition) PHI publications.

Reference Books:

2. Computer Networks, M. Dave, Cengage
3. An Engineering Approach to Computer Networking, Keshav, Pearson
5. Telecommunication Switching System and Networks, Viswanathan, PHI
Introduction:
This course provides a thorough introduction to the Digital Logic Circuits and the basic building blocks used in digital systems. The course also introduces Hardware Description Language. It starts with a discussion of combinational logic circuits: logic gates, minimization techniques, arithmetic circuits, data processing circuits. The second part of the course deals with sequential circuits: flip-flops, registers and counters.

Course Prerequisite: Student has completed a Course in Basic Electronics and has an in-depth knowledge of electronic components and fundamentals of digital electronics.

Course Objectives:
1. To introduce various number systems and Boolean algebra.
2. To introduce concepts of digital principles, digital logic circuits and its advantages.
3. To develop designing and implementation skills of combinational logic circuits and sequential circuits.
4. To design and simulate digital circuits using Hardware Description Language (HDL).

Course Outcomes:
Students will be able to
1. Apply the concepts of various number systems, Boolean algebra to solve relevant problems.
2. Design digital logic circuits.
3. Design and implement combinational logic circuits and sequential circuits.
4. Simulate different logic circuits using Hardware Description Language (HDL).

SECTION I

<table>
<thead>
<tr>
<th>UNIT-1</th>
<th>Digital Principles and Number Systems</th>
<th>10 Hrs.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>UNIT-2</th>
<th>Combinational Logic Design</th>
<th>10 Hrs.</th>
</tr>
</thead>
</table>
UNIT-3 | **Combinational Logic Design using MSI Circuits** | **10 Hrs.**
---|---|---
Data selector / multiplexer, MUX as logic function, Decoder / Demultiplexes, application of MUX/ DEMUX using IC – 74151, 74154, 74148, problems based on MSI circuits, decoder driver for 7 segment display using 7447. Digital Comparator, Parity Checker, Arithmetic Logic Unit.

SECTION II

UNIT-4	**Sequential Logic Circuit**	**10 Hrs.**

UNIT-5	**Introduction to Verilog HDL**	**10 Hrs.**

UNIT-6	**Digital Design with Verilog HDL**	**10 Hrs.**
HDL Implementation of Data Processing Circuits: 2:1, 4:1, 8:1 Multiplexer, BUS Representation in HDL, HDL Implementation of Flip-Flops, Register, Counters.

Internal Continuous Assessment (ICA):
Student should perform 8 to 9 Experiments using Trainer Kit / Bread Board and Synthesis tool: Xilinx ISE.

1. a) Verification of truth table of basic and universal logic gates.
 b) Implementation of Boolean functions using Basic and Universal Gates.

2. Implementation of reduced Boolean functions (K – map technique) from Assignment No 1 using basic and universal gates.

3. Implementation of half adder and full adder using Basic Gates.

4. a) Design and Implement a 4:1 multiplexer using 74153 IC.
 b) Design and Implement a 8:1 multiplexer using 74151 IC.

6. Implementation of Mod 10 (Decade) Counter & Mod 5 counters using IC 7490.

7. a) Write Verilog code to realize all the logic gates, Simulate and verify it’s working.
 b) Design the Half subtractor and full subtractor using Verilog Code, Simulate and verify its working.

8. a) Design a 4:1 & 8:1 multiplexer circuit using Verilog Code, Simulate and verify its working.
 b) Design a 1:8 Demultiplexer circuit using Verilog Code, Simulate and verify it’s working.

9. Design the following flip-flops, SR, D, JK, T using Verilog Code, Simulate and verify its working.

Text Book:

Reference Books:
5. Digital Electronics, Rishabh Anand, Khanna Publishing House
Introduction:
This course introduces the basic of computer graphics and different basic graphics functions. It also develops ability for implementation of different algorithms. With this course student can acquire computer graphics techniques, its uses and implementation details.

Course Prerequisite: Knowledge of C Programming & Mathematics.

Course Objectives:
1. To introduce basics elements of computer graphics and graphic devices.
2. To demonstrate the line, circle and polygon filling algorithms.
3. To demonstrate 2D and 3D transformations.
4. To use clipping algorithms.
5. To introduce hidden and visible surfaces, different types of curves.

Course Outcome:
Student will able to
1. Draw graphical elements using built-in graphic functions in ‘C’.
2. Differentiate different graphical devices.
3. Draw lines, Circles and fill polygons.
4. Apply simple 2D and 3D transformations to given object and create simple 2D animations.
5. Demonstrate different clipping algorithms, surfaces and different types of curves.

SECTION I

UNIT-1 Basic Concepts & Devices
- Introduction to computer graphics, Application of Computer Graphics, pixel, frame buffer, resolution, aspect ratio, Video display devices: Refresh CRT, Raster scan display, Random scan display, color CRT monitors, Interactive devices: joysticks, touch panels, light pens.

UNIT-2 Raster scan Graphics
- Line drawing algorithms: DDA, Bresenham's algorithm, Bresenham's Circle generation algorithm, Run Length Encoding, Polygon filling: Scan converting polygon, Edge fill, Edge flag, Seed fill.

UNIT-3 Geometric Transformations
- 2D Transformation: Translation, Rotation, Reflection, Scaling, Shearing, Combined transformation, Rotation about an arbitrary point, Reflection through an arbitrary line.
- 3D Transformation: Scaling, Shearing, Rotation, Reflection, Translation, Multiple Transformation, Rotation about axis parallel to coordinate axis.
SECTION II

<table>
<thead>
<tr>
<th>UNIT-4</th>
<th>Clipping & Display File Compilation</th>
<th>7 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sutherland-Cohen line clipping algorithm, Midpoint subdivision algorithm, Viewing transformation, Window transformation, segmented display file, Display file compilation.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT-5</th>
<th>Visible Lines & Visible Surfaces</th>
<th>8 Hrs.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>UNIT-6</th>
<th>Plane curves & Space curves</th>
<th>7 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction to curve generation, Curve representation, interpolation, Non parametric & parametric curves, Bezier curves, B-spline curves, Introduction to fractals, Fractal lines and surfaces.</td>
<td></td>
</tr>
</tbody>
</table>

Internal continuous assessment (ICA):

Student should perform 8 to 10 experiments based on following guide lines.

1. To Study Basic graphics functions.
2. Implementation of DDA line drawing algorithm.
3. Implementation of Bresenham’s line drawing algorithm.
4. Implementation of Bresenham’s Circle generation algorithm.
5. Implement Polygon filling algorithms.
6. Implement 2D transformation.
8. Implement Sutherland – Cohen line clipping algorithm.
10. Case study of OpenGL
11. Implement a small animation package.

Text Books:

Reference Books:

Introduction:
This course introduces study and implementation of advanced features of C Programming language. Storage classes, built-in library in C, string processing, pointer concepts. This course also introduces few data structure concepts such as Recursion, file concepts and sorting, searching and hashing techniques.

Course Prerequisite:
Student shall have basic C programming knowledge and background of mathematics.

Course Objectives:
1. To introduce storage classes and macros.
2. To apply recursion for different types of problems.
3. To enable student to use file and pointer concepts.
4. To study different searching and sorting algorithms.
5. To study different hashing techniques.

Course Outcomes:
Students will be able to
1. Define, use and compare storage classes in C.
2. Develop recursive solutions for given problems.
3. Apply file, pointer concepts and string functions for given problem statements.
4. Implement linear, binary searching and hashing techniques.
5. Implement different sorting algorithms like bubble sort, insertion sort, quick sort and merge sort.

SECTION I

<table>
<thead>
<tr>
<th>UNIT-1</th>
<th>C Preprocessor and Storage Classes</th>
<th>3 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features of C Preprocessor, Macro Expansion - Macros with Arguments and Macros versus Functions, File Inclusion, Conditional Compilation - #if and #elif Directives; Storage Classes - Automatic, Register, Static, External storage classes.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT-2</th>
<th>Pointers</th>
<th>4 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define Pointer, Pointer to Pointer, Pointers to Array, Array of Pointers, Pointer to String, Pointer to Structure, Pointer to Function, Memory Allocation - Static and Dynamic memory</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT-3</th>
<th>Files</th>
<th>4 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction, Streams and file types, File operations, Different File I/O Functions, other file functions, command line arguments.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIT - 4 Recursion

Definition and Process of Recursion in C, Types of Recursion, Comparison of Iterative and Recursion methods, How recursion works, Factorial, Fibonacci sequence, Towers of Hanoi, Advantages and Disadvantages of recursive techniques.

4 Hrs.

SECTION II

UNIT - 5 String Processing

user-defined functions to perform string operations – length, compare, concatenate, copy; array of strings

3 Hrs.

UNIT - 6 Searching and Sorting

Study and Implementation of Searching Algorithms- Linear search and Binary search.
Study and Implementation of Sorting Algorithms- Bubble sort, Insertion sort, Merge sort, Quick sort, Selection sort, Shell sort and Radix sort.

8 Hrs.

UNIT - 7 Hashing

Different Hash Functions, choosing a hash function Collision Resolution by Open Addressing: Linear probing, quadratic probing, double hashing, Collision Resolution by Chaining.

4 Hrs.

Internal Continuous Assessment (ICA):
ICA should be based on the following implementations using C programming language. Minimum 8 assignments should be conducted from following 11 assignments.

1. Assignments based on C Preprocessor and Macro concepts.
 i) Write a C program to define macro definitions for the following:
 (a) To test whether a character entered is a small case letter or not.
 (b) To test whether a character entered is an upper case letter or not.
 (c) To test whether a character is an alphabet or not. Make use of them macros you defined in (a) and (b) above.
 (d) To obtain the bigger of two numbers.
 ii) Write a C program to define macro definitions with arguments for calculation of area and perimeter of a triangle, a square and a circle. Store these macro definitions in a file called —areaperi.h. Include this file in your program, and call the macro definitions for calculating area and perimeter for different squares, triangles and circles.

2. Assignments based on Storage classes in C.
 i) Write a C program to demonstrate storage classes such as auto, register, static and extern.

3. Assignments based on Pointer concepts.
 i) Write a C program to demonstrate pointer concept.
 ii) Write a C program to demonstrate pointer to pointer concept.
 iii) Write a C program to demonstrate pointer to array concept.
 iv) Write a C program to demonstrate array of pointers concept.

4. Assignments based on Pointer concepts.
 i) Write a C program to demonstrate pointer to string concept.
 ii) Write a C program to demonstrate pointer to function concept.
 iii) Write a C program to demonstrate pointer to structure concept.
5. Assignments based on Dynamic memory allocation concepts in C.
 i) Write a C program to demonstrate use of calloc() function.
 ii) Write a C program to demonstrate use of malloc() function.
 iii) Write a C program to demonstrate use of realloc() function.
 iv) Write a C program to demonstrate use of free() function.

6. Assignments based on File concepts in C.
 i) Write a C program to open a given file, read a file and display file contents.
 ii) Write a C program to open a file and write to file.

7. Assignments based on Recursion concept. (any 2)
 i) Write a C program to calculate factorial of given number using recursive method.
 ii) Write a C program to display Fibonacci series using recursive method.
 iii) Write a C program to solve Towers of Hanoi problem using recursion method.
 iv) Write a C Program to find reverse of a number using recursion.
 v) Write a C Program to convert decimal number to binary number using recursion.
 vi) Write a C Program to find power of a number using recursion.

8. Assignments based on String operations.
 i) Write a C program to perform different string operations using string library functions such as string length, comparison, concatenation, and copy
 ii) Write a C program to perform different string operations such as string length, comparison, concatenation, and copy using user-defined functions.

9. Assignments based on searching concepts:
 i) Write a C program to implement Linear Search.
 ii) Write a C program to implement Binary Search.

10. Assignments based on sorting concepts. (any 2)
 i) Write a C program to implement Bubble sort.
 ii) Write a C program to implement Insertion sort.
 iii) Write a C program to implement Quick sort.
 iv) Write a C program to implement Merge sort.
 v) Write a C program to implement Selection sort.
 vi) Write a C program to implement Shellsort.

11. Assignments based on Hashing concepts using array (any 2)
 i) Write a C program to implement Hashing concept.
 ii) Write a C program to demonstrate collision in hashing technique.
 iii) Write a C program to demonstrate collision resolution using Open Addressing method i.e. Linear probing

Text Books:
1. Let Us C by YashvantKanetkar[Unit-1, 3, 5]
2. Pointers in C by YashvantKanetkar[Unit-2]
4. C with Data Structures by Dr. R. Nageswara Rao [Unit-1, 2, 3, 5, 6]

Reference Books:
1. Data Structures through C in Depth, S.K. Srivastava, Deepali Srivastava, BPB Publications
3. Data Structures A Pseudocode Approach with C by Richard F. Gilberg & Behrouz A. Forouzan
Introduction:
This course introduces numerical methods (Unlike analytical methods) to solve algebraic and transcendental equations, simultaneous systems of linear equations and numerical integrations. This course also introduces the fuzzy set theory in brief which deals with characterizing the concept of uncertainty and its relationship to the increasingly important concept of information and complexity. This course also introduces simplex method to solve LPP and assignment problems.

Course Prerequisite:
Student shall have knowledge of basic notions of classical set theory and probability theory. Student shall have to be familiar with some analytical method for solving equations, simultaneous equations & analytical methods to solve definite integrations.

Course Objectives:
1. To make students familiar with the uncertainty.
2. To give students comprehensive coverage of operations on fuzzy sets.
3. To make student use of numerical methods for the problems that can not be solved analytically.
4. To enable students to solve Linear Programming Problems and Assignment Problems.

Course Outcomes:
1. Student can solve non linear algebraic and transcendental equations.
2. Student can solve simultaneous linear and non-linear equations.
3. Students can apply numerical methods to evaluate definite integrals.
4. Student can apply knowledge of basics of fuzzy set theory to solve the problems.
5. Student can solve the fuzzy equations.
6. Students can solve a particular kind of problems arises in day to day life using simplex method and Assignment Problems.

SECTION I

Unit 1: Solution of algebraic and transcendental equation
Basic properties of equations, False position method, Newton-Raphson method, Multiple roots, Newton’s iterative formula for obtaining square root, system of non-linear equations by Newton Raphson method.

Unit 2: Solution of linear simultaneous equations
Direct methods – Gauss Elimination method, Gauss Jordan methods, Method of factorization Iterative methods – Jacobi’s method, Gauss-seidal method, power method to find eigen value and eigen vector.

Unit 3: Numerical Integration
Numerical integration using Newton’s cote’s formulae – Trapezoidal rule, simpson’s 1/3rd rule, Simpson’s 3/8th rule, Weddel’s rule, Romberg integrations, Double integrations.
SECTION II

Unit 4: Classical (Crisp) sets to fuzzy sets:
Crisp sets, Basic types of fuzzy sets, Basic concepts of fuzzy sets, fuzzy sets vs Crisp sets: Additional properties of α-cuts, representation of fuzzy sets and extension principle of fuzzy sets.

Unit 5: Fuzzy arithmetic.
Fuzzy number, arithmetic operations on intervals, arithmetic operations on fuzzy numbers, fuzzy equations, lattice of fuzzy numbers.

Unit 6: LPP and Assignment Problems.
Introduction of LPP, Simplex method for LPP, Assignment problem: introduction mathematical formulation of Assignment Problem, Hungarian method to solve Assignment Problem.

Internal Continuous Assessment (ICA):
ICA shall consist of minimum six to eight assignments based on entire curriculum

Text Books:
1) B.S. Grewal, Numerical methods, Khanna publication, New Delhi.
2) George J Klir and Bo Yuan, Fuzzy sets and Fuzzy logic – PHI India.
3) Fundamental of statistics, S.C. Gupta, Himalaya house publication.

Reference Books:
1) George J. Klir and Tina A. Folger, Fuzzy sets, uncertainty and information, PHI India.
2) Robert J. Schiling, Sandra L. Harris, Applied Numerical methods for Engineers.
4) Pundir & Pundir, Fuzzy sets and their applications – Pragati Publications.
Introduction:
Theory of computation lays a strong foundation for a lot of abstract areas of computer science. TOC teaches you about the elementary ways in which a computer can be made to think. Any algorithm can be expressed in the form of a finite state machine and can serve as a really helpful visual representation of the same. Sometimes, the finite state machines are easier to understand thus helping the cause furthermore.

Prerequisite: Students should have prior knowledge of Discrete Mathematical Structure

Course Objectives:
1. To introduce the computational principles to build regular expressions for given regular language.
2. To introduce different types of automata.
3. To explain regular and non-regular languages.
4. To introduce context free grammar.
5. To introduce different types of Pushdown automata and Turing machine.

Course Outcome:
Students will be able to
1. Build regular expression for a given language.
2. Design different types of automata.
3. Classify languages as regular and non-regular language.
4. Detect ambiguity in a grammar and convert into unambiguous grammar and normal forms.
5. Design pushdown automata and Turing machine for a given language.

SECTION-I

<table>
<thead>
<tr>
<th>UNIT</th>
<th>Regular Expressions</th>
<th>8 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regular expressions & corresponding regular languages, examples and applications, unions, intersection & complements of regular languages</td>
<td></td>
</tr>
<tr>
<td>UNIT-2</td>
<td>Finite Automata</td>
<td>8 Hrs.</td>
</tr>
<tr>
<td></td>
<td>Finite automata definition and representation, Non-deterministic F.A., NFA with ^ transitions, Equivalence of DFA & NFA</td>
<td></td>
</tr>
<tr>
<td>UNIT-3</td>
<td>Kleen’s Theorem</td>
<td>8 Hrs.</td>
</tr>
<tr>
<td></td>
<td>Statements & proofs, minimizing number of states in an FA, Basics of Moore and Mealy Machines</td>
<td></td>
</tr>
</tbody>
</table>
UNIT – 4 Grammars & Languages 8 Hrs.
Definition and types of grammars and languages, derivation trees and ambiguity, CNF notations, Union, Concatenation and *'s of CFLs, Eliminating ^ production and unit productions from a CFG, Eliminating useless variables from a Context Free Grammar.

SECTION-II

UNIT – 5 Push down Automata 7 Hrs.
Definition, deterministic PDA & types of acceptance, equivalence of CFGs & PDAs.

UNIT – 6 CFL's & Non CFL's 6 Hrs.
Pumping Lemma & examples, intersection and complements.

UNIT – 7 Turing machines 10 Hrs.
Models of computation, definition of TM as language Acceptors, Combining Turing machines, computing a function with a TM.

UNIT - 8 Variations in TM 5 Hrs.
TM's with doubly infinite tapes, Multitape, Non-deterministic TM and universal TM.

Internal Continuous Assessment (ICA):
Students should solve assignments based on the topics below:
1. Regular Expression & Corresponding Languages
2. Union, Intersection & Complements of Regular languages
3. Design & Simulation of Simple Finite Automata
4. Nondeterministic Finite Automata & NFA with ^ transitions ,Conversion of NFA to DFA
5. Draw NFA using Kleenstheorm
6. DFA minimization
7. Grammer ,Removing ambiguity from a grammar ,Conversion to BNF & CNF form
8. Push Down Automata
9. Pumping Lemma & Examples for regular sets & regular languages
10. Turing Machine

Text Books:
1. Introduction to languages & theory of computation -- John C. Martin (MGH)
2. Formal Languages & Automata Theory-- Basavraj S. Anami, Karibasappa K.G., Wiley Precise Textbook-Wiley India

References:
1. Theory of Computation—Rajesh K Shukla (CENGAGE Learning)
3. Discrete mathematical structures with applications to Computer science -- J.P.Tremblay & R.Manohar (MGH)
4. Theory of Computer Science: Automata, Languages and Computation, Mishra, Phi
Introduction:
This course introduces to develop an in-depth understanding of the operation of microprocessor, machine language programming and interfacing techniques.

Course Prerequisite: Knowledge of Digital Techniques and Basic Electrical Engineering

Course Objectives
1. To introduce 8085 and 8086 microprocessor architectures and their functionalities.
2. To get acquainted to the programming model of 8086 microprocessor.
3. To develop microprocessor based programs for various applications.
4. To build the interfacing between microprocessor and various peripherals.
5. To introduce basics of 80286, 80386 and 80486 microprocessors.

Course Outcomes
Students will be able to
1. Demonstrate the basic microprocessor architecture and its functionality.
2. Write and implement simple assembly language programs.
3. Write and implement simple assembly language programs for interfacing.
4. Differentiate between 8086, 80286, 80386 and 80486 microprocessors.

<table>
<thead>
<tr>
<th>UNIT-1</th>
<th>Introduction to Microprocessor</th>
<th>4 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction to microprocessor, Features and pin diagram of 8085, 8085 MPU architecture</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT-2</th>
<th>8086 Microprocessor</th>
<th>6 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8086 Architecture, Internal Operation, Machine Language Instructions: Addressing Modes, Instruction Execution Timing</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT-3</th>
<th>Assembly Language Programming</th>
<th>6 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assembler Instruction Format, 8086 instruction set, Directives</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT-4</th>
<th>System Bus Architecture</th>
<th>4 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction, Basic 8086 Configurations: Minimum Mode, Maximum Mode, System Bus Timing</td>
<td></td>
</tr>
</tbody>
</table>
SECTION-II

<table>
<thead>
<tr>
<th>UNIT-5</th>
<th>Interrupts</th>
<th>6 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction, Types of 8086 Interrupts, Interrupt and Interrupt service Routine, Maskable and Non-maskable Interrupt, Programmable Interrupt Controller (8259), Programmable, Features and Block Diagram of DMA Controller 8257, Operating modes of 8257.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT-6</th>
<th>Programmable peripheral Interface</th>
<th>4 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Programmable peripheral Interface 8255, Modes of Operation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT-7</th>
<th>Programmable Communication Interface and 8087 NDP</th>
<th>4 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8087 numeric data processor. NDP data types, processor architecture</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT-7</th>
<th>The 80286, 80386 and 80486 Microprocessor</th>
<th>5 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction to 80286 Microprocessor, Architecture, Real Address Mode Operation, Protected Mode operation, 80386 Architecture, 80486 Architecture</td>
<td></td>
</tr>
</tbody>
</table>

Internal Continuous Assessment (ICA):
Student should perform 8 to 10 experiments using TASM/MASSM based on following guidelines:
1. Addition and subtraction of two 16 bit numbers
2. Addition and subtraction of two 32 bit numbers
3. 16 bit multiplication of unsigned numbers.
4. 8 bit division of unsigned numbers
5. Find factorial of number
6. Generate a Fibonacci series.
7. Program for block transfer
8. Program to arrange numbers in ascending and descending order
9. Program to find Largest No. in a block of data.
10. Program to display the strings.
11. Program to implement keyboard sensing using 8255
12. Implementation of 7-segment display using 8255

Text Books:
1. Microprocessor Architecture, Programming, and Applications with the 8085 - Ramesh Gaonkar, Fifth edition. (UNIT -1)
2. Lice & Gibson, —Microcomputer System 8086 / 8088l PHI, 2nd Edition. (Unit 2, 3, 4, 7)
3. D. V. Hall, —Microprocessor and Interfacing Programming & Hardwarel TMH – 2nd Edition-(Unit 8)
4. A K Ray & K M Bhurchandi —Advanced Microprocessors and Peripheralsl. 2nd Edition (Unit 5,6)

Reference Books:
Introduction:
This course introduces various linear data structures like stack, queue, linked list and non-linear data structures like various kinds of trees and graphs. Course includes implementation of various operations of these data structures and some applications.

Course prerequisites:
This course requires prior knowledge of advanced C.

Course Objectives:
1. To introduce students to various data structures.
2. To develop programming skills to implement and analyze linear and non linear data structures.
3. To identify and apply the suitable data structure for problem solving.

Course Outcome:
Students will be able to
1. Demonstrate and differentiate between different data structures.
2. Demonstrate Programming skills to implement different data structures by using various C language features.
3. Identify specific data structure to solve given problem.

SECTION I

<table>
<thead>
<tr>
<th>UNIT - 1</th>
<th>Introduction to Data Structures & Stack</th>
<th>5 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>What is Data Structure, types of data structures – static, dynamic, primitive, non-primitive, linear, non-linear
Stack: Definition, representation, Operations, Implementation and applications like conversion of polish notations, evaluation of postfix expressions.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT - 2</th>
<th>Queues</th>
<th>4 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definition, representation, Operations, Implementation: Linear Queue, Circular Queue, Priority Queue.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT - 3</th>
<th>Lists</th>
<th>6 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definition, representation, Operations, Types of Lists: Singly Linked list, Doubly Linked list, Circular Linked list, Stack using linked list, Queue using Linked list, Application of Linked list: Addition and Subtraction of two polynomials</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT - 4</th>
<th>Trees</th>
<th>8 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definition, Traversal, Linked implementation, Operations on: Binary trees and Binary Search Trees, Introduction to Threaded Binary trees</td>
<td></td>
</tr>
</tbody>
</table>
SECTION –II

<table>
<thead>
<tr>
<th>UNIT - 5</th>
<th>Multiway Trees</th>
<th>7 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Multiway search Trees, Balanced Multiway Trees, Traversing a Multiway Tree, Insertion in Multiway Tree: B Trees, B+ Trees</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT - 6</th>
<th>Height Balance Trees</th>
<th>7 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AVL Trees: Definition, Height of an AVL Tree, Insertion, Deletion of node in AVL Trees, Single and Double rotation of AVL Trees.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT - 7</th>
<th>Graphs</th>
<th>8 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definition, Undirected and Directed Graphs, Graph Terminologies, Computer Representation of Graphs, Graph Traversal methods: Depth First and Breadth First Search, Application: Shortest Path using Dijkstra's algorithm.</td>
<td></td>
</tr>
</tbody>
</table>

Internal Continuous Assessment (ICA):

List of Assignments: (minimum 18 assignments)

1. Implementation of Stack using array
2. Implementation of Stack using structure.
3. Conversion of infix expression to postfix expression using Stack.
5. Implementation of Linear Queue using array.
8. Implementation of Singly Linked List and operations on it.
9. Implementation of Doubly Linked List and operations on it.
10. Implementation of Singly Circular Linked List.
12. Implementation of Stack using Linked List.
15. Implementation of Binary Search Tree and its traversal (In order, Preorder, Post order).
16. Implementation of Binary Search Tree and deletion of nodes in it.
18. Implementation of graph using adjacency list.
19. Implementation of Depth First Traversal of Graph.
20. Implementation of Breadth First Traversal of Graph.
21. Creation of B Tree of order 3 or 5 by inserting nodes in it using some example.
22. Creation of B+ Tree of order 3 or 5 by inserting nodes in it using some example.
23. Creation of AVL Tree by performing different rotations.

Text Books:

Reference Books:

<table>
<thead>
<tr>
<th>No.</th>
<th>Book Title</th>
<th>Author(s)</th>
<th>Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Data Structures Through C in Depth</td>
<td>S.K. Shrivastava, Depali Shrivastava</td>
<td>BPB Publications</td>
</tr>
<tr>
<td>4</td>
<td>Fundamentals of Data Structures</td>
<td>Sartaj Sahni</td>
<td>University Press</td>
</tr>
<tr>
<td>5</td>
<td>Data Structures</td>
<td>RS Salaria</td>
<td>Khanna Publishing House</td>
</tr>
<tr>
<td>6</td>
<td>Data Structures through C</td>
<td>Yashwant Kanetkar</td>
<td>BPB Publications</td>
</tr>
<tr>
<td>7</td>
<td>Expert Data Structures with C++</td>
<td>RB Patel</td>
<td>Khanna Publications</td>
</tr>
</tbody>
</table>
Introduction:
This course introduces TCP/IP protocol in detail and it also covers the IPv4 Addressing, Socket Programming, Transport layer and Application layer protocols.

Course Prerequisite: Student should have the knowledge of Data communication fundamentals and types of Computer Networks

Course Objectives:
1. To introduce in IPv4 addressing.
2. To introduce Transport layer protocols: TCP, UDP and SCTP.
3. To introduce client-server paradigm for socket interfaces
4. To introduce different application layer protocols like DNS, FTP and TELNET.

Course Outcomes:
Student will be able to
1. Identify different addressing modes using IPv4.
2. Implement client-server paradigm for socket interfaces using UDP, TCP & SCTP.
3. Use different functions of application layer protocols like DNS, FTP, Email and TELNET

SECTION I

<table>
<thead>
<tr>
<th>UNIT-1</th>
<th>IP Protocol</th>
<th>7 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Internet Protocol: Introduction, IP Datagram, fragmentation, Addressing: Physical, Logical, Port & Application Specific Addresses. Introduction to IPv4 Addresses: Classful addressing, Classless addressing, Special addresses, NAT.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT-2</th>
<th>Transport Layer</th>
<th>8 Hrs.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>UNIT-3</th>
<th>Client Server Model and Socket Interface</th>
<th>8 Hrs.</th>
</tr>
</thead>
</table>

SECTION II

<table>
<thead>
<tr>
<th>UNIT-4</th>
<th>Host Configuration & Domain Name System</th>
<th>7 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Host Configuration: BOOTP Operation, Packet format, DHCP: Introduction, DHCP Operation and Configuration. Domain Name System: Need for DNS, Name Space, DNS in the Internet, Resolution, DNS Messages, Types of Records.</td>
<td></td>
</tr>
<tr>
<td>UNIT- 5</td>
<td>Remote Login and TELNET</td>
<td>7 Hrs.</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>TELNET Concept, Time-Sharing Environment, Network Virtual Terminal, Embedding, Options, Symmetry, Sub option Negotiation, Controlling the Server, Out-of-Band Signaling, Escape Character, Mode of Operation, User Interface.</td>
<td>SSH: Components, Port Forwarding, Format of SSH Packets.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT- 6</th>
<th>File Transfer and Electronic Mail</th>
<th>8 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP: Introduction, control & data connections, Communication over data and control connection, Command Processing</td>
<td>TFTP: Messages, Connection, Data Transfer, UDP Ports, TFTP Applications.</td>
<td></td>
</tr>
<tr>
<td>Electronic Mail: Architecture, User Agent, Message Transfer Agent, SMTP, Message Access Agent: POP and IMAP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Internal Continuous Assessment (ICA):
Students should perform minimum 8 experiments based on the following guidelines and preferably conducted on Unix / Linux platform using C language.

5. Implementation of Simple Network Chatting Application.
6. Remote Login: TELNET
 a. Log on to a remote computer from client using TELNET.
 b. After logging on executes few commands at remote server from client. For example user wants a server to display a file (hello.txt) on a remote server then he/she types: cat hello.txt.
 c. Log on to a remote computer from client using TELNET and Putty terminal emulator. After logging on execute few commands. Here Client and Server are on heterogeneous systems, for example client is on windows and server is on Linux.
7. Remote Login: SSH
 a. Log on to a remote computer from client using SSH.
 b. After logging on executes few commands at remote server from client. For example user wants a server to display a file (hello.txt) on a remote server then he/she types: cat hello.txt.
 c. Log on to a remote computer from client using SSH and Putty terminal emulator. After logging on execute few commands. Here Client and Server are on heterogeneous systems for example client is on windows and server is on Linux.
8. Installation and configuration of DHCP
9. Installation and configuration of FTP.

Text Books:
1. TCP/IP Protocol Suite: Behrouz A. Forouzan (Fourth Edition) (Unit 1,2,3,5,6)
Reference Books:

1. Internetworking with TCP/IP Vol III. Client-Server Programming & Applications: Douglas E. Comer
2. Data and Computer Communications: William Stallings
3. Data Communication and Networking: Behrouz A. Forouzan
4. Computer Networks, M. Dave, Cengage
5. An Engineering Approach to Computer Networking, Keshav, Pearson
7. Telecommunication Switching System and Networks, Viswanathan, PHI
Introduction:
OOP provides a clear modular structure for programs. OOP provides a good framework for code libraries where supplied software components can be easily adapted and modified by the programmer. C++ has a longer history with game development in general. It's a device level programming, Multi-paradigm, compiled, general-purpose programming language. It is regarded as a "middle-level" language, as it comprises a combination of both high-level and low-level language features.

Course Prerequisite:
Student should have programming language fundamentals.

Course Objectives
1. To introduce fundamental concepts and principles of Object Oriented Programming.
2. To enable students to write simple programs in C++.
3. To introduce students where exactly C++ (OOPS) should be used.

Course Outcome
Students will be able to
1. Illustrate principles of OOPS: Data Abstraction, Polymorphism, Inheritance and File Handling.
2. Implement OOPS Concepts through C++ programs.
3. Identify the applications of OOPS concepts for a given problem.

SECTION - I

<table>
<thead>
<tr>
<th>UNIT</th>
<th>OOP Concepts</th>
<th>3 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIT - 1</td>
<td>OOP Concepts</td>
<td>3 Hrs.</td>
</tr>
<tr>
<td>UNIT - 2</td>
<td>Functions</td>
<td>4 Hrs.</td>
</tr>
<tr>
<td>UNIT - 3</td>
<td>Operator Overloading</td>
<td>4 Hrs.</td>
</tr>
<tr>
<td>UNIT - 4</td>
<td>Inheritance</td>
<td>4 Hrs.</td>
</tr>
</tbody>
</table>
SECTION – II

<table>
<thead>
<tr>
<th>UNIT – 5</th>
<th>Pointers and Virtual Functions</th>
<th>5 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Memory Management Operators - new and delete, Pointers to objects, this pointer, Pointers to Derived classes, Virtual Function, Late Binding, Pure Virtual Functions, and Abstract Base Classes.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT – 6</th>
<th>Manipulators and File Handling</th>
<th>4 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C++ Streams, C++ stream classes, Managing Output with Manipulator, File Stream Classes, Working with File, Object I/O, Command Line Arguments.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT – 7</th>
<th>Template and Exception Handling</th>
<th>4 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class Templates, Function template, Exception handling, Throwing Mechanism, Catching Mechanism, Rethrowing an Exception.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT - 8</th>
<th>Introduction to Standard Template Library</th>
<th>2 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Components of STL, Containers, Algorithms, Iterators, Application of Container classes.</td>
<td></td>
</tr>
</tbody>
</table>

Internal Continuous Assessment (ICA):
Student should implement minimum 8 assignments from the following.
1. Assignment on Class, Constructor, Destructor
2. Assignment on function Overloading, Constructor Overloading
3. Assignment on Operator Overloading
4. Assignment on Multiple Inheritance, Multilevel Inheritance
5. Assignment on Static Variables & Function in class
6. Assignment on Virtual Function, Virtual Class
7. Assignment on Function template, Class template
8. Assignment on Friend class and function,
9. Assignment on File handling
10. Assignment on Exception handling,
11. An individual student has to submit a project using C++ language as a part of ICA.

Text Books:
1. Object Oriented Programming with C++ - E. Balagurusamy (McGraw-Hill)
2. Programming with C++ - D. Ravichandran (TMGH)

Reference Books:
1. C++ programming language - Bjarne Stroustrup (AT & T)
2. Object oriented programming in Turbo C++ - Robert Lafore (Galgotia)